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ARTICLE INFO ABSTRACT

Handling Editor: Piotr Ulanski The radiation resistance of Bacillus pumilus spores to gamma rays, X-rays, and electron beam (e-beam) was
investigated using industrial irradiators operating at various dose rates. The dose rates were as follows: gamma 1
and 10 kGy/h; X-ray 10 and 200 kGy/h; e-beam 2000 kGy/h. The regression analysis showed that survivor
curves were log g linear for all three sources within the investigated absorbed dose range of 1-6 kGy, irrespective
of the dose rate applied. All irradiation technologies were equally efficient to inactivate the spores, which is
reflected in their comparable D-values (p > 0.05), and dose rate had no impact on the microbicidal efficacy.
These results suggest that wherever a specified minimum dose is delivered, the sterilization dose can be trans-
ferred between irradiation technologies in industrial sterilization of medical devices without any impact on
product sterility. These findings from a novel single study encompassing all available industrial radiation
technologies for the purpose of medical devices sterilization, advance our understanding of microbial destruction
as related to exposure to important sterilization modalities, which will help inform future applicability of these
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technologies for emerging industry opportunities.

1. Introduction

Sterilization by radiation is employed as the means of achieving
required sterility assurance for some 50% of single use medical devices,
with gamma irradiation being the most widely used technology
(GIPA-Gamma Industry Processing Alliance, 2017). However, in the past
number of years certain challenges regarding Cobalt-60, the raw mate-
rial for gamma processing, have been identified (Dethier, 2016; BPSA,
2021). Such challenges have culminated in the advancement of accel-
erator based technologies, such as X-ray and electron beam (e-beam)
(McEvoy et al., 2020). In particular, X-ray has been established as a
sustainable supplement to gamma due to many similarities between the
two photon-based technologies (McEvoy et al., 2020). Many potential
changes are considered when migrating to X-ray, including the effect on
materials, any potential induced radioactivity, the effect of dose rate,
temperature impacts, and processing time. Considerable focus has been
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placed on material effects (Murray et al., 2012, 2014; Fifield et al., 2021)
and induced radioactivity in materials processed with energy above 5
MeV (Michel et al., 2021). Currently, the Association for the Advance-
ment of Medical Instrumentation (AAMI) is generating a Technical In-
formation Report (TIR104) to provide guidance to users when
considering a change of radiation technology (Montgomery et al., 2021).
That entails performing a risk assessment to identify and quantify the
potential impact on the functionality and performance of the medical
devices following the terminal sterilization process (Montgomery et al.,
2021). Among other factors to be considered when products are moved
to X-ray, it is imperative to ensure that the sterility assurance level (SAL)
is achieved. Dose rate is a key differential parameter between gamma,
electron beam and X-ray, and its effect on sterilization efficacy should be
considered (Kroc et al., 2017). Dose rate is defined as the quantity of
radiation absorbed per unit of time, and while it can take hours to
sterilize products with gamma, the treatment can be completed within
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minutes with an X-ray (Dethier, 2016) and seconds with an e-beam.
Furthermore, a recent paper by the Irradiation Panel on gamma and
electron irradiation (2020) has re-emphasised the need to consider the
effect of higher dose rates. With regard to medical device sterilization,
researchers have found that microbicidal efficacy is primarily a dose
dependant activity. In their work, Tallentire et al. (2010) and Tallentire
and Miller (2015) found that microbiological responses for water hy-
drated B. pumilus spores were the same for all types of industrial irra-
diators, while Hansen et al. (2020) demonstrated microbicidal
equivalence of gamma and e-beam when microorganisms were irradi-
ated in a dry state. However, such studies investigating the microbicidal
efficacy of irradiation technologies under conditions typical for indus-
trial sterilization of medical devices are scarce, and more research is
needed to evaluate the possibility of transfer of minimum doses required
for inactivation between irradiators of the same and/or different irra-
diation sources. Therefore, in this study, the microbicidal efficacy of all
relevant industrial irradiators (gamma, X-ray, and e-beam), operating at
different dose rates, have been directly compared in terms of decimal
reduction time (D-value) utilizing a single biological indicator reference
microorganism. A D-value can be defined as the time or dose required
under given conditions to achieve inactivation of 90% (or 1 log) of a
population of the test microorganisms (ISO 11139:2018) and is
commonly used in sterilization microbiology to express the sterilization
efficacy of the process. As a reference microorganism, Bacillus pumilus
spores were selected due to its high radiation resistance and irradiated in
a dry state, as being representative for industrial sterilization processes.
Moreover, other sterilization parameters such as temperature and en-
ergy level were also assessed regarding their impact on microbial inac-
tivation. The findings from this novel study herein are expected to
further substantiate our understanding of the sterilization efficacy of
industrial irradiators.

2. Experimental
2.1. Pre-trial to determine the stability of irradiated spores

Prior to executing the experiment, a pre-trial was carried out to
determine the stability of irradiated spores, i.e., to establish a time frame
within which irradiated spores need to be microbiologically analysed.
Spores (biological indicator Lot P102, Crosstex, USA) had a certified
population of 2.2 x 10° and a D-value of 1.6 kGy. The manufacturer’s
spore population claim was verified, and samples were prepared and
irradiated with e-beam at a nominal dose of 3.5 kGy. Irradiated samples
were immediately (within 30 min) incubated at 2-8 °C and microbio-
logically analysed at designated time intervals: 0, 24, 48, 72 and 96 h.
Grown colonies were enumerated and colony forming units (CFU)
calculated. Viable counts (CFU) recovered at different time points were
statistically compared to determine the population stability over time.
Spore population claim verification, sample preparation, irradiation and
microbiological analysis were carried out as described in the current
paper.

2.2. Sample preparation

Commercial Bacillus pumilus (ATCC 27142) biological indicator (BI)
paper strips were used in this study. Spores were supplied by Crosstex
(USA, Lot P104) as a certified population containing 2.6 x 10° viable
spores (colony forming units (CFU)) per paper strip with a D-value of
1.7 kGy based on the manufacturers test method. The spore population
claim was verified following the manufacturer’s instructions prior to
running the experiment. In brief, the procedure was carried out as
described for B. pumilus recovery with the addition of a heat shock
treatment where biological indicators were first incubated at 65-70 °C
for 15 min and then rapidly cooled to below 4 °C. B. pumilus samples for
X-ray and gamma irradiation were prepared as described by Tallentire
et al. (2010) and Tallentire and Miller (2015) with modifications.

Radiation Physics and Chemistry 208 (2023) 110915

Briefly, individual B. pumilus spore strips were carefully secured in the
middle of a Petri dish, without breaking the sterile barrier. Absorbed
dose was measured with Alanine dosimeters (Harwell Dosimeters, UK),
placed in a Petri dish next to each spore strip (Fig. 1). Samples were
prepared differently for e-beam irradiation: two WINdose dosimeters
(GEX, USA) were secured to a spore strip (each from one side) and then
taped to the middle of a paper envelope (Fig. 1). Two new spore strips
were then taped, one on the left and the other on the right side of the
dosimeter. Duplicate spore strips were used for microbiological analysis,
while the strip placed between two dosimeters was only used for refer-
ence dose measurement.

2.3. Irradiation of Bacillus pumilus spores

Dose mapping experiments were conducted for all technologies to
determine the maximal and minimal dose zones, reproducibility, and
dose rate of the process. Different configurations were designed and
trialled to establish a set-up capable of precise dose delivery (data not
shown). Once the configuration was established, spore strips were
irradiated in duplicates, either placed in Petri dishes (X-ray and gamma)
or as duplicate BI’s placed in a paper envelope (e-beam). Petri dishes
have been processed in static mode with a fix irradiation field dose rate
for the X-ray or gamma at 1 kGy dose increments. Each set of duplicates
received a nominal dose of 1, 2, 3, 4, 5 or 6 kGy. After exposure to the
nominal dose for a particular set of duplicates was achieved, B. pumilus
spore strips were retrieved for microbiological analysis, while Alanine
dosimeters were retrieved for measurement of the absorbed dose. To
evaluate the impact of dose rate on inactivation efficacy, samples were
treated at different fixed dose rates: 1 or 10 kGy/h with gamma, and 10
or 200 kGy/h with X-ray. The X-ray dose rate is directly proportional to
the electron beam current, and it was modified by changing this current.
E-beam treatment was performed at 2000 kGy/h, and samples received a
nominal dose (1, 2, 3, 4, 5 or 6 kGy) with a single conveyance through
the electron field. All irradiated B. pumilus spore strips were kept at
2-8 °C and microbiologically analysed within 72 h of treatment. Spore
samples were transported in temperature controlled boxes (2-8 C°; Peli
Biothermal, UK).

2.4. X-ray, gamma, and e-beam irradiation systems

STERIS AST Radiation Technology Center (RTC) in Daniken
(Switzerland), Tullamore (Ireland) and in Bradford (UK) were utilized
for X-ray, e-beam, and gamma treatment, respectively. With X-ray,
B. pumilus spore strips were treated with photons achieving a maximal
energy of 7 MeV (560 kW) using a Rhodotron TT1000 (IBA, Belgium)
electron accelerator. Radiation source for gamma was Cobalt-60, with
an activity of approximately ~330 kCi. E-beam treatment was per-
formed using a 10 MeV (5 kW) electron accelerator (Mevex, Canada)
with a horizontal beam delivery. All treatments were carried out at
ambient atmosphere and temperature. Temperature indicators (GEX,
USA) with a detection range of 27.5 °C-65 °C were used to measure the
maximal temperature achieved during treatment.

2.5. Evaluation of the absorbed dose

For gamma and X-ray, Alanine dosimeters (detection range 0.1-100
kGy) were analysed using an electron spin resonance spectroscopy
dosimetry system (Aerial/Bruker MS5000). For e-beam, GEX B3
WINdose radiochromic thin film dosimeters were measured using a
dosimetry system based on a visible spectrophotometer (Thermo Fisher
Genesys 20). Dosimetry systems were calibrated for condition of use
against the National Physics Laboratory (NPL, UK). Dosimetry system
uncertainty has been assessed at 4% (k = 2) for Alanine and at 6% (k =
2) for GEX dosimetry.
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Fig. 1. Experimental set-up. Sample preparation (configuration) was identical for X-ray and gamma: biological indicators were placed in a Petri dish (a) together
with dosimeters (b), and stacked Petri dishes were irradiated (d). Placement at X-ray in static mode in front of the beam is shown in panel e. For e-beam irradiation,
one biological indicator was placed in between two dosimeters and taped in the middle of a paper envelope (c), while two individual biological indicators used for
microbiological analysis were then taped, one on the left and the other on the right side of the dosimeter (not shown in the figure). Sample placement on the carrier
(paper envelope fixed to the middle of the carrier) for e-beam treatment is shown in panel f.

2.6. Bacillus pumilus recovery, plotting a survivor curve and D-value
calculation

Untreated B. pumilus (N,) and surviving fraction of treated spores (N)
were recovered from spore strips and cultured in Tryptic soy agar (TSA,
Biokar, France). First, the spore strips were transferred into a sterile test
tube containing 5 mL of sterile dH20 and 10 sterile 6-mm glass beads.
The tube was vortexed until the strip was pulped, and another 5 mL of
water was added. Then the tube was vortexed again until a homoge-
neous suspension was achieved. Serial 1:10 dilutions were aseptically
prepared using sterile water and 1 mL of the appropriate dilution was
inoculated in TSA agar, in duplicates. Plates were incubated at 30-35 °C,
enumerated after 48h of incubation, and colony forming units (CFU)
were calculated to quantify the viable bacteria. The survivor curve was
generated by plotting the logarithm of the survivor fraction (log;o N/N,)
against the absorbed dose. Regression analyses were performed, and
average D-values calculated from the slope of the obtained curve (ISO
11138-7:2019), for each technology and dose rate combination.

2.7. Statistical analysis

Student’s T-test was used to determine the statistical significance
between the population recovered immediately after irradiation (0 h)
and after incubation at 2-8 °C (24, 48, 75 and 96 h). Analysis of variance
(one-way ANOVA) was used to determine the statistical significance
between the obtained D-values. Tests were performed at confidence

level (or intervals) alpha of 0.05, using Minitab Statistical Software.
3. Results
3.1. Stability of irradiated spores

The stability of irradiated spores was tested over a time period of 96
h. Spore samples were irradiated with e-beam, at an average absorbed
dose of 3.4 + 0.08 kGy. No statistical difference was found when pop-
ulation recovered immediately after irradiation (CFU at 0 h) was
compared with population obtained after designated incubation period
at 2-8 °C (CFU at 0, 24, 48, 72 and 96 h). The population was approx-
imately at 4.4 log CFU up to 96 h of incubation, when it increased to 4.6

Table 1
A viable population (CFU) of spores recovered immediately after irradiation (0
h) and after 24, 48, 72 and 96 h of treatment. Spores were incubated at 2-8 °C.

Runs Log CFU at investigated time points
Oh 24h 48h 72h 96 h
Run 1 4.48 + 4.39 + 4.48 + 4.41 + 4.43 +
0.05 0.17 0.15 0.07 0.01
Run 2 4.42 + 4.44 + 4.37 + 4.53 + 4.65 +
0.20 0.03 0.01 0.20 0.14
Run 3 4.42 + 4.37 + 4.41 + 4.43 + 4.74 +
0.18 0.01 0.11 0.08 0.06
Average  4.44 4.40 4.42 4.46 4.61
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log CFU (Table 1). Although the increase in CFU was not statistically
significant, for the purpose of this study a time point of 72 h was selected
as the last stable point. Therefore, further microbiological analysis was
carried out within 72 h of irradiation.

3.2. Absorbed doses

Considering that accurate dose delivery is crucial for obtaining
reliable results in inactivation experiments, the absorbed dose of each
sample was monitored in the study. The absorbed doses during treat-
ment at each nominal dose are shown in Table 2.

3.3. Temperature

During treatment with gamma and e-beam, the temperature was
below the detection limit for GEX temperature indicators (27.50 °C).
During X-ray processing at 10 kGy/h, the temperature was observed to
increase from an average starting temperature of 32 + 2°Cto 36 + 2 °C
at the end of irradiation. Similarly, at a dose rate of 200 kGy/h, the
temperature increased from 29 + 1 °C to 34 + 3 °C.

3.4. B. pumilus survivor curves and resistance to irradiation with regards
to irradiation technology and dose rate

The regression analysis indicated that all survivor curves were logio
linear (ISO 11138-7:2019) within the investigated dose range, irre-
spective of the dose rate applied, with all R> > 0.95. The curves with
corresponding R? values are shown in Fig. 2. Based on the slope of the
obtained curves, the D-values were calculated and compared (Fig. 3). No
statistical difference (p > 0.05) was found between irradiation sources,
irrespective of the dose rate applied.

4. Discussion

To ensure that the microbiological growth response is a valid rep-
resentation of the sterilization efficacy of the process, there should be
adequate control over the biological indicator recovery system (Caputo
et al., 1980). Namely, there should be a control over the length of time
elapsed between exposure to a sterilant and growth testing, and the
temperature at which microorganisms are incubated before the micro-
biological analysis, as these factors are known to impact the recovery of
treated microorganisms (Caputo et al., 1980). In this study, the recovery
of irradiated spores (CFU) was comparable for all tested time points. A
slight increase in CFU was observed at 96 h post treatment, and although

Table 2

Absorbed doses of samples during irradiation with gamma-rays, X-rays, and
electron beam radiation at different dose rates. Data are shown as means of three
independent runs +1 standard deviation.

Radiation Dose Absorbed dose during treatment at each nominal dose
technology rate (kGy)
(kGy/
h) 1 2 3 4 5 6
Gamma 1 1.00 2.00 2.95 3.91 4.86 5.86
+ + + + + +
0.02 0.03 0.06 0.08 0.11 0.11
10 1.02 2.07 3.06 4.03 5.09 6.15
+ + + + + +
0.02 0.03 0.08 0.05 0.06 0.10
X-ray 10 1.01 2.00 2.97 3.99 5.04 6.10
+ + + + + +
0.01 0.01 0.04 0.06 0.06 0.12
200 0.98 2.09 2.87 3.92 4.97 6.34
+ + + + + +
0.04 0.20 0.08 0.04 0.15 0.22
E-beam 2000 0.92 2.05 3.02 4.12 5.10 6.0 +
+ + + + + 0.00

0.10 0.10 0.08 0.13 0.10
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this change was not statistically significant, the previous time point (72
h) was selected as a timeframe for carrying out microbiological analysis.
Therefore, all spore samples in this study were incubated at 2-8 °C
immediately after irradiation (within 30 min of treatment), transported
at temperature-controlled conditions and microbiologically analysed
within 72 h of irradiation.

The resistance ofB. pumilus was examined under the following
experimental conditions: gamma 1 kGy/h; gamma 10 kGy/h; X-ray 10
kGy/h; X-ray 200 kGy/h and e-beam 2000 kGy/h. The configuration
used in the experiment supported accurate and uniform dose delivery,
which is evidenced by the absorbed dose results (Table 2), but also in the
clear clustering of data points when recovered microorganisms were
plotted against the absorbed dose (Fig. 2, panel f). The regression
analysis indicated that all inactivation curves were log;o linear (R2 >
0.95) within the investigated dose range of 1-6 kGy. A logig linear
correlation between bacterial inactivation and the treatment dose of
ionizing radiation was previously reported by others (Tallentire et al.,
2010; Zhang et al., 2020). A non-linear (biphasic) inactivation curve for
B. pumilus has been reported by Tallentire and Miller (2015); however,
the inactivation still followed the first-order kinetics up to about 6 kGy,
whereas for doses above 6 kGy, inactivation occurred at an increased
rate. Findings from this study support first order model, where a plot of
the logarithm of surviving fraction against time yields a straight line,
and the inactivation rates are expressed in terms of decimal reduction
time, or D-value, which is the reciprocal of the specific inactivation rate
at a particular dose of the agent. However, there are many exceptions to
the simple first-order type kinetics, especially when microorganisms are
exposed to relatively mild inactivation that frequently yield a low
number of log reductions (Rowan, 2019) that can produce non-log linear
inactivation curves; moreover, these inactivation curves may exhibit
pronounced initial shoulders, extended tails, or sigmoid curves that are
challenging to fit to the primary data (Rowan et al., 2015). Effective
modelling of microbial inactivation arising from physical, chemical or
gaseous treatment modalities typically requires the plot to encompass a
6 log microbial count (or survival ratio) versus time data (Buzrul, 2017)
for several reasons. Firstly, such a dose-response curve is necessary to
address the potential occurrence of microbial variance and resistance to
the applied stress that may take different inactivation shapes interpreted
through a mathematical best-fit (Garre et al., 2020). A large number of
log-reductions are required to effectively interpret and fit inactivation
plots (Rowan, 2019), and 6 log reduction has also been shown to support
and enable the irreversible destruction of treated microorganisms by
way of demonstrating simultaneous occurrence of cellular and molec-
ular damage through ‘lethal hits’ (Farrell et al., 2011; Hayes et al., 2013;
Gérard et al., 2019; Franssen et al., 2019; Fitzhenry et al., 2021). As
evident from these findings, when microorganisms are exposed to irra-
diation, the concentration of surviving B. pumilus spores decreases
exponentially with dose. This infers the inactivation process reflects a
first-order reaction where lethal events occur at random over time with a
defined population of spores, which are similarly susceptible to the
agent (Klotz et al., 2007). As reported in this study, the first order ki-
netics are aligned with the physical nature of the process. Thus, when a
uniform suspension of microorganisms is irradiated, quanta of radiant
energy interact with spores in a random stochastic, which from first
principles, implies that lethal ‘hits’ are distributed in a Poissonian
manner (Klotz et al., 2007). These findings suggest that spores in a
pre-determined population are equally susceptible to death resulting
from a single hit in a dried treatment state. In contrast to radiation, moist
heat may differ where treated microorganisms do not all receive the
same dose of energy per unit time, as the kinetic energy of water mol-
ecules are distributed according to the Mazwell-Botzmann distribution
(Klotz et al., 2007).

No significant statistical difference was detected between the ob-
tained D-values, indicating that all radiation technologies (gamma, X-
ray, and e-beam) were equally effective at inactivating the challenge
microorganism, regardless of the dose rate applied. D-values were
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Fig. 2. Inactivation of B. pumilus spores treated with (a) Gamma 1 kGy/h, (b) Gamma 10 kGy/h, (c¢) X-ray 10 kGy/h, (d) X-ray 200 kGy/h and (e) e-beam 2000 kGy/
h. Data points for all investigated technologies are plotted together in panel f. Error bars represent the standard deviations for absorbed dose (horizontal) and counts
of microorganisms (log CFU; vertical). R? values are calculated as means of three independent runs (panels a—e).
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Fig. 3. D-values of B. pumilus treated with gamma, X-ray, and e-beam at
different dose rates. Data are shown as means + standard deviation.

within a range of 1.46-1.61 kGy. The finding that dose rate had no
impact on microbial inactivation supports the possibility of dose transfer
between technologies. Other researchers have obtained similar results
for B. pumilus treated with industrial irradiators (gamma and 10 MeV e-
beam); for example, Tallentire et al. (2010) reported a D-value of 1.5 for
both technologies, while Hansen et al. (2020) also found the two tech-
nologies to be comparable and reported D-values within a range of
1.2-1.5 kGy. On the other hand, some authors have reported results
showing variance when investigating the dose-rate effect and micro-
bicidal efficacy of radiation technologies (Jung et al., 2015; Song et al.,
2016; Kyung et al., 2019; Begum et al., 2020). However, such results are
often difficult to compare as studies have been carried out under
differing test conditions (not always applicable to industrial sterilization
settings) and product types.

Although dose rate is a critical parameter, other factors, including
temperature and energy level, may also differ between the technologies.
The bactericidal effects of ionizing radiation may be enhanced at
elevated temperatures (usually above 45 °C), however, this synergistic
effect is characteristic for vegetative cells, while spores are impacted to a
much lesser extent, as pointed out by Emborg (1974) and Silva Aquino
(2012). To evaluate the potential impact of such parameters on the
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radiation resistance of B. pumilus, spores were treated with gamma and
X-ray operating at the same dose rate, and temperature was monitored
during treatment. However, it is not possible to determine the exact
temperature difference between the two technologies due to the limi-
tations of the measuring system. A higher temperature was detected in
the X-ray bunker, where spores were exposed to at least ~5 °C higher
temperature than gamma at the beginning and at least ~9 °C higher
temperature at the end of the treatment. More importantly, the
maximum temperature detected in this study was 36 °C which is un-
likely to influence the rate of inactivation of the spores. Regarding the
differences in the energy level of the two radiation sources, gamma
emits two wavelengths of high energy rays (1.17 and 1.33 MeV), while
5-10 MeV X-ray emits a spectrum of photon energies with a peak
occurring at approximately 0.3 MeV, as highlighted by Meissner et al.
(2000) and McEvoy et al. (2020). Considering that comparable D-values
(p > 0.05) were obtained for both technologies operating at 10 kGy/h,
the results suggest that when the potential impact of the dose rate was
excluded, the variability in temperature and energy levels used in this
research had no impact on microbicidal effectiveness of the source.

As previously pointed out by Tallentire et al. (2010), in industrial
sterilization of medical devices the microorganisms are commonly
irradiated in a “dry” state, although “dryness” is not precisely defined,
and it is often a function of the ambient relative humidity. The goal of
this study was to evaluate biological indicator spores in a ‘dry’ physio-
logical state, as being representative of a significant microbiological
challenge in industrial sterilization processing. Hence, based on the
experimental conditions, results reported in this study suggest that the
sterilization dose can be transferred between modes of irradiation in
industrial sterilization of medical devices, without causing any impact
on the sterility assurance level (SAL), as long as the specified dose is
delivered. This finding is particularly relevant to the ecosystem of in-
dustry, but also regulators and academia, who seek evidence-based
findings to further enable and advance a transition from gamma to
X-ray.

5. Conclusions

All investigated technologies (gamma, X-ray, and e-beam) showed
log-linear inactivation kinetics (RZ > 0.95) and were equally efficient to
inactivate B. pumilus, which is indicated in comparable D-values (p >
0.05), regardless of the dose rate applied.

Considering that dose rate had no impact on sterilization efficacy,
the data suggests that an easier transition can be obtained within
different ionizing radiation technologies without extensive work related
to the sterilization effects as a function of the dose rate. That is, the
results reported herein suggest that transfer of minimum doses required
for inactivation is possible between irradiators of the same and/or
different irradiation source without impacting the sterility assurance
level (SAL), in accordance with ISO11137-2:2013.
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